Nucleoplasmin regulates chromatin condensation during apoptosis.

نویسندگان

  • Zhigang Lu
  • Chuanmao Zhang
  • Zhonghe Zhai
چکیده

Although chromatin condensation is one of the hallmarks of apoptosis, its relationship with DNA fragmentation has been controversial. We show here that apoptotic chromatin condensation is regulated by nucleoplasmin, a protein that decondenses sperm chromatin during male pronuclear assembly. In Xenopus egg extracts, nucleoplasmin is tyrosine-dephosphorylated during apoptosis. This dephosphorylation inactivates the chromatin decondensation activity of nucleoplasmin and leads to its exclusion from the chromatin. Inhibition of tyrosine dephosphorylation prevents apoptotic chromatin condensation but not DNA fragmentation. Studies with mutant proteins indicate that dephosphorylation of nucleoplasmin at Tyr-124 regulates chromatin condensation through changes in the interaction of nucleoplasmin with chromatin and the loss of its chromatin decondensation activity. These results show that chromatin condensation and DNA fragmentation are independent processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication.

During late mitosis and early G(1), a series of proteins are assembled onto replication origins, resulting in them becoming 'licensed' for replication in the subsequent S phase. Four factors have so far been identified that are required for chromatin to become functionally licensed: ORC (the origin recognition complex) and Cdc6, plus the two components of the replication licensing system RLF-M ...

متن کامل

Two Distinct Pathways Leading to Nuclear Apoptosis

Apaf-1(-/-) or caspase-3(-/-) cells treated with a variety of apoptosis inducers manifest apoptosis-associated alterations including the translocation of apoptosis-inducing factor (AIF) from mitochondria to nuclei, large scale DNA fragmentation, and initial chromatin condensation (stage I). However, when compared with normal control cells, Apaf-1(-/-) or caspase-3(-/-) cells fail to exhibit oli...

متن کامل

Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation

Apoptosis is the predominant form of cell death observed in a variety of physiological and pathological conditions such as cancer involution, insect metamorphosis, the development of the immune and nervous systems, and embryogenesis. The typical nuclear changes taking place in apoptotic cells include extensive condensation of chromatin and internucleosomal DNA fragmentation into units of 200 ba...

متن کامل

Modeling apoptotic chromatin condensation in normal cell nuclei. Requirement for intranuclear mobility and actin involvement.

Hallmarks of the terminal stages of apoptosis are genomic DNA fragmentation and chromatin condensation. Here, we have studied the mechanism of condensation both in vitro and in vivo. We found that DNA fragmentation per se of isolated nuclei from non-apoptotic cells induced chromatin condensation that closely resembles the morphology seen in apoptotic cells, independent of ATP utilization, at ph...

متن کامل

In-vitro human spermatozoa nuclear decondensation assessed by flow cytometry.

The process of sperm chromatin decondensation occurs when a spermatozoon enters an ovum. Protamine disulphide bonds are reduced to SH and the polycationic protamines combine with the polyanionic egg protein, nucleoplasmin, thus being stripped from DNA which then combines with histones. Defective chromatin decondensation will thus prevent further development of the male pronucleus. In this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 8  شماره 

صفحات  -

تاریخ انتشار 2005